

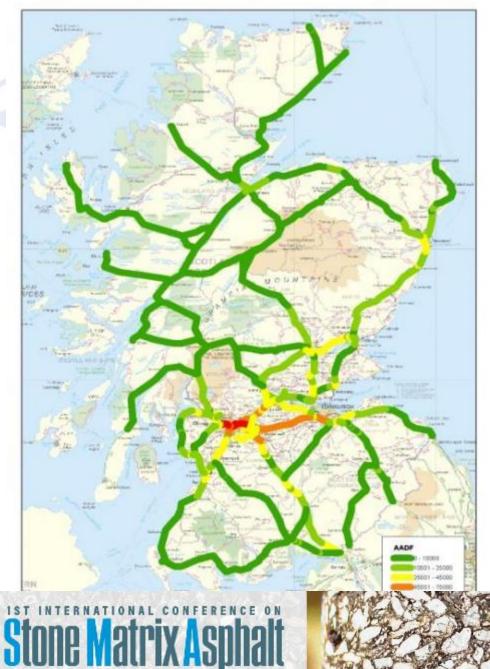
1st International Conference on Stone Matrix Asphalt

> November 2018 Atlanta, Georgia

This is in – Thin SMA Surfacing

Martin McLaughlin CEng MICE Head Strategic Asset Management & Customer Strategy Transport Scotland

This is in – Thin SMA Surfacing

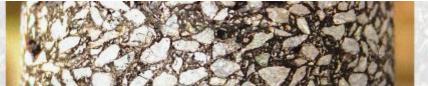


- Who are Transport Scotland?
- History SMA in UK
- Scottish Research
- TS2010 Specification
- Results from implementation
- Thin layers
- Case Study

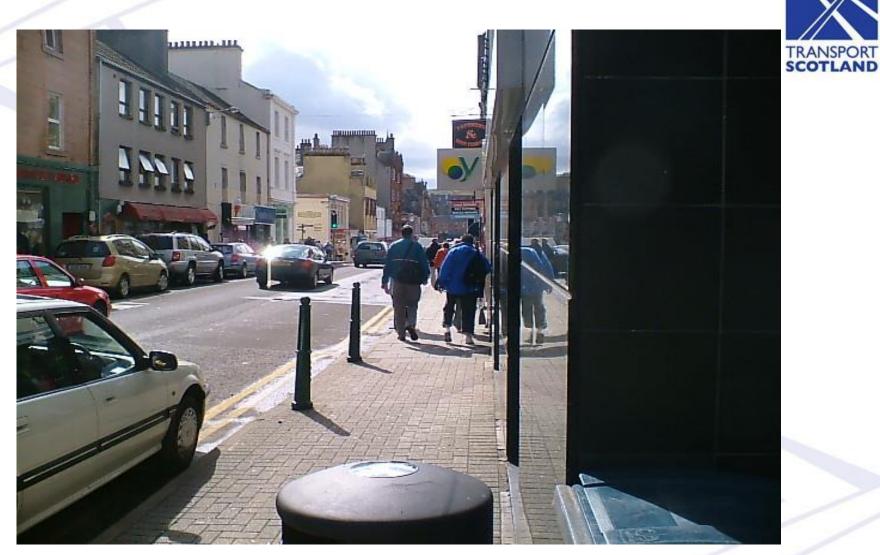
Role of the Network

- •Trunk Road •Motorways •A roads Dual •A roads Single •Local Road
- 3,432 km 539 km (16%) 512 km (15%) 2,381 km (69%) 54,776 km
- •6% of total Scottish road network
 •37.5% of all traffic
 •63% of all HGV traffic
 •2,007 bridges and 4,100 other structures
- •Asset Value £18 billion •4 Operating Companies •4 DBFOs

Stone Matrix Asphalt



Stone Matrix Asphalt



Brief History

HRA most common until mid 1990s

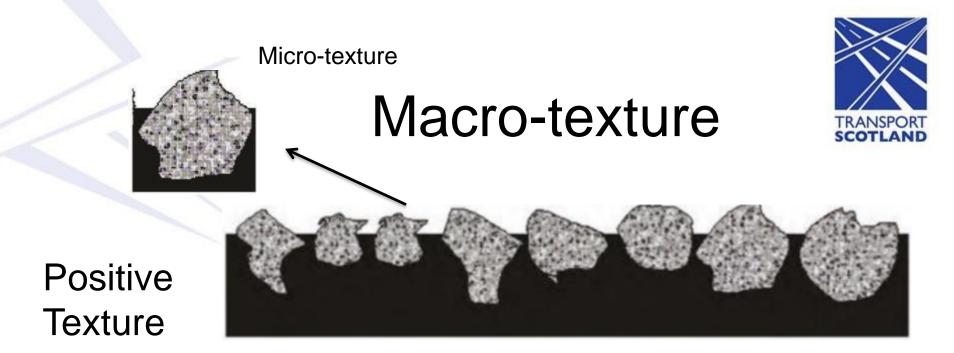
- Generally long service
- Rutting Problem

Brief History

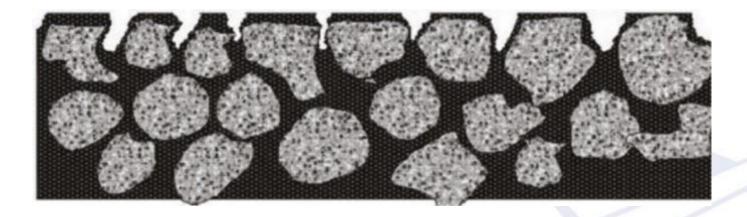
- SMA Introduced to UK mid 1990s
- Quickly became popular:
 - High resistance to rutting
 - Smaller working crew size
 - Quicker to lay than HRA
 - Reduced working space requirements
 - Quieter than Hot Rolled Asphalt (HRA)

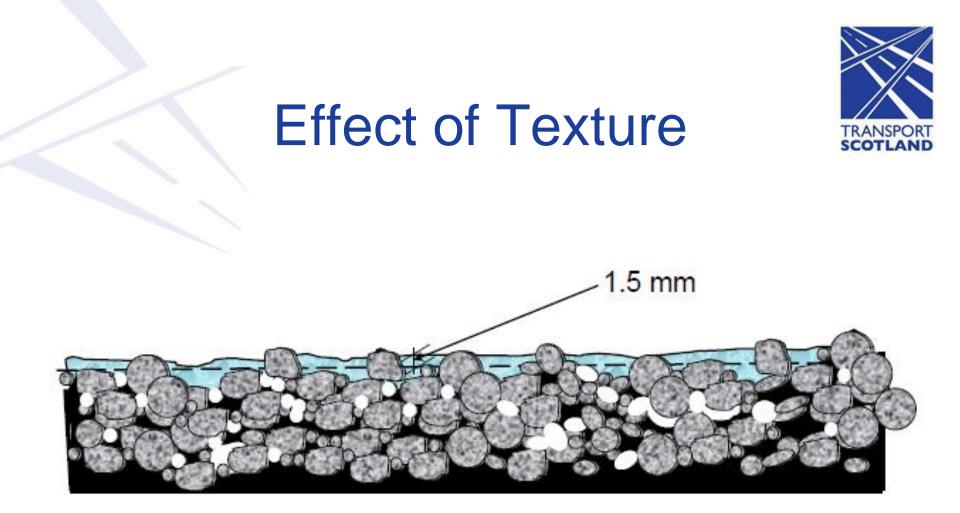
Europe to UK

- German SMA + French UL-M
- New concepts:
 - Mechanical interlock (stone to stone)
 - Thin layers (25mm thickness)
- Coarse + fine aggregate bound in mastic
- Mixtures may contain fibres or polymers
- Texture requirements added in UK
- Proprietary Thin Surface Course System



Clause 942 Thin Surface Course




Negative Texture

Stone Matrix Asphalt

2006 review durability

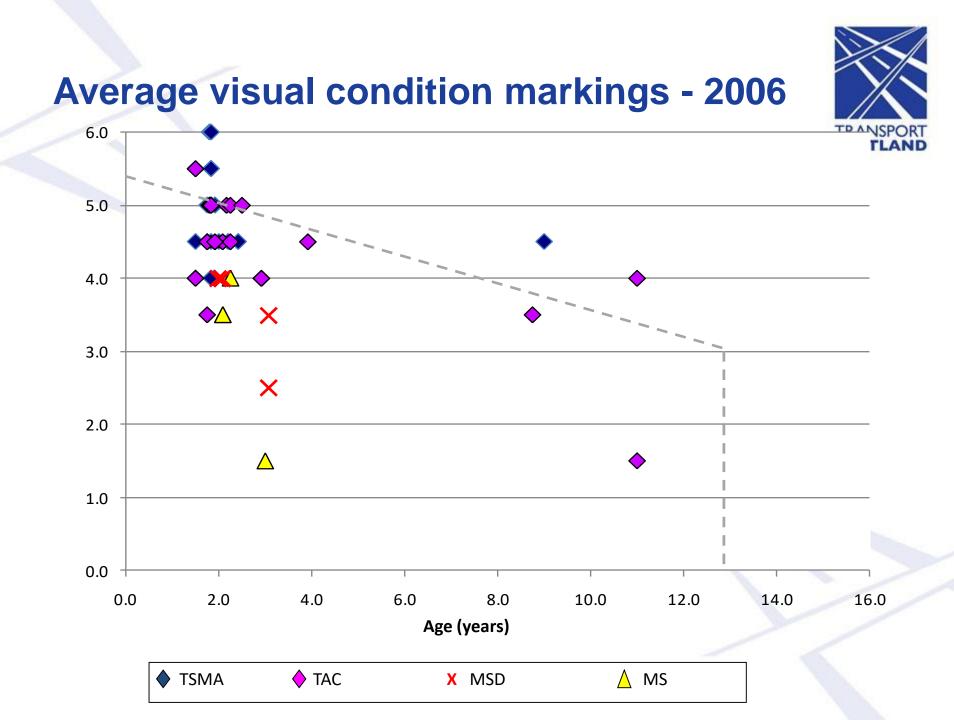
- Poor Performance of Thin Surfacing
- Leading to reduced Value for Money
- Reduced sustainability
- User disruption
- Public Perception 'potholes'

Scottish Inspection Panel

- Academic, Industry, Client
- 7 point scale developed by TRL
- Panel average score (6-8 people)
- Week long inspection tour
- Random selection +2 year pavements
- Annual event

2006 review - Observed defects

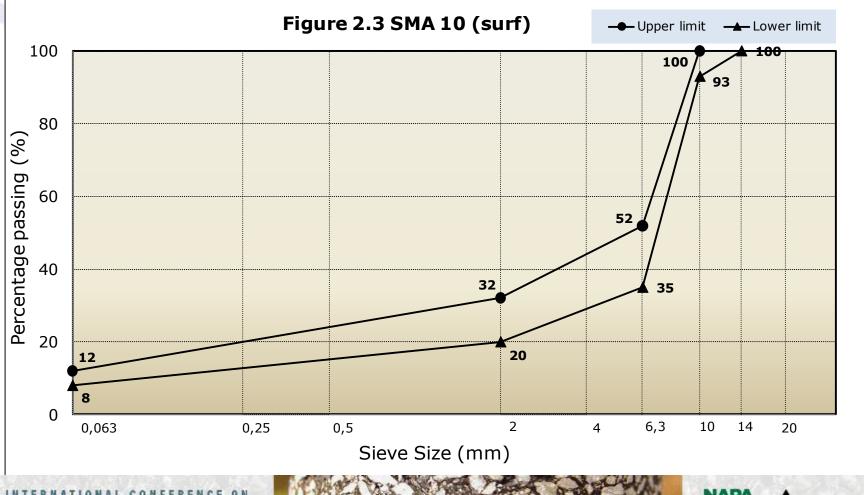
Houston – we have a problem


Scottish Inspection Panel

- Summary Findings
 - Poor performance of Thin Surfacing
 - Fatting & flushing
 - Ravelling joints & fretting
 - Open texture & high air voids
 - General durability concerns
 - Workmanship
 - Allowed a focus on areas on concern

Research Project

- Fact finding trip on the use of SMA in Germany
- Application and Experience
- Specifications
- Practice of pre-gritting SMA
- Test site on M8 motorway

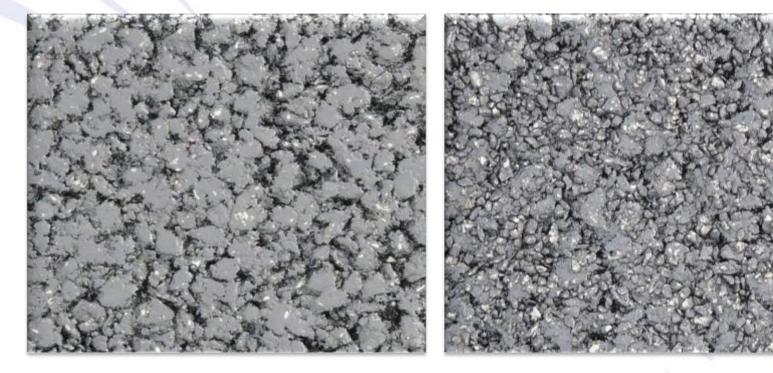


TS 2010 - Specification

- What are the differences?
 - Very tight specification
 - Gap grading & binder content (+ 0.5% to 1.0%)
 - Polymer modified (SBS) + fibres Step change
 - Air voids requirement
 - No texture or PSV requirement
 - Introduction of gritting
 - Performance Specification
 - Skid Resistance (4 weeks + 6 months + annual)
 - Controlled implementation
 - Type Approval Installation Trial (TAIT)

Stone Matrix Asphalt

SCOTLAN


TS2010 SMA

Gritting

0/14mm before (left) and after (right) gritting

Gritting Roller

TRB

TS2010 benefits

- Superior durability
- Better value + sustainability
- High resistance to permanent deformation (low air voids)
- Good skid resistance, including early-life
- Low noise levels
- Better use of local aggregates

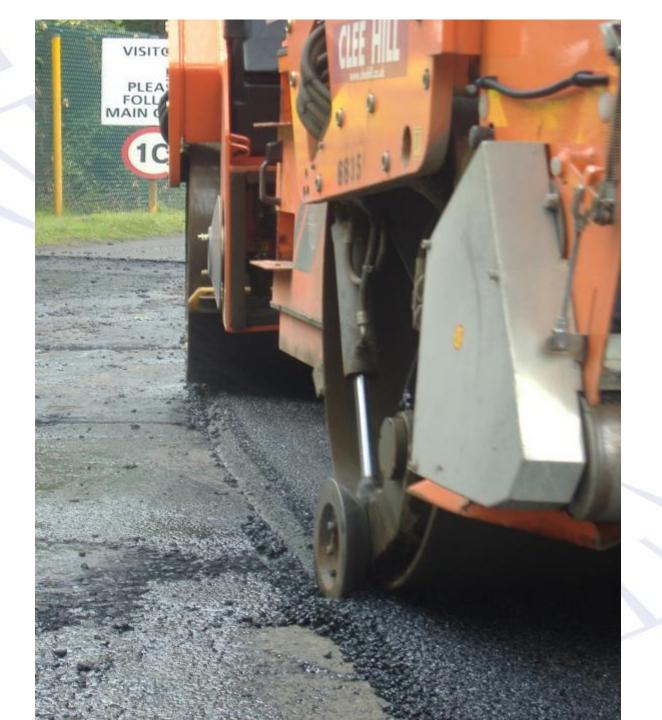
TS2010 Approval

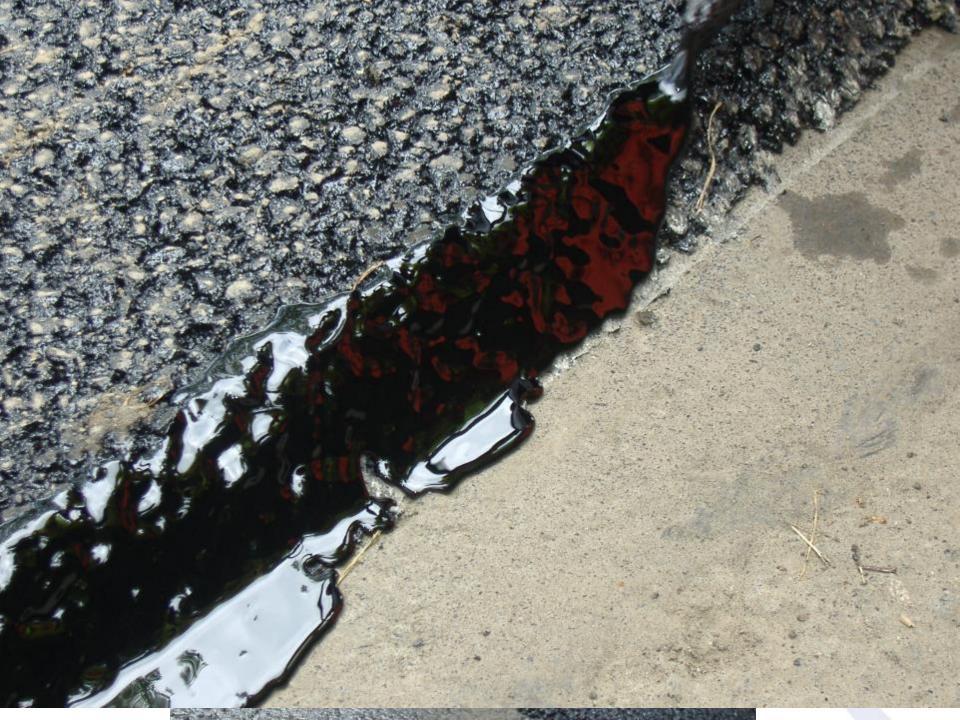
- Type Approval Installation Trial (TAIT)
- 3 Stage process
- Stage 1 Lab mix design
- Stage 2 Off network paver laid trial
- Stage 3 Trunk road surfacing trial

Rigorous Approval Procedure Stage 1 Lab design

Table 2.1: Stage 1 compliance results

Test	Requirement	Value	√/×
Coarse aggregate apparent particle density	Declared	2.97kg/m ³	~
Coarse aggregate resistance to polishing	PSV _{declared}	61	~
Coarse aggregate resistance to abrasion	AAV ₁₂	3.2	×
Coarse aggregate resistance to fragmentation	LA ₃₀	13	~
Coarse aggregate resistance to wear	M _{DE declared}	8	~
Flakiness	FI ₂₀	17	~
Air voids SMA 10 (Surf)	V _{min3} , V _{max3.5}	3.5%	~
Binder content	6.7% ±0.2%	6.7%	~
Binder penetration (Nypol 103)	75 - 130	94/109	~
Binder softening point	>=75	91/91.5	~
Binder drainage	D _{0.3}	0.1%	~
Resistance to permanent deformation	Declared	0.04mm/10 ³ cycles	~


Stage 2 Off site trial


Stone Matrix Asphalt

Stage 2 compliance results

Test	Requirement	Value	√/x
Air voids in mat	V_{min2}, V_{max5}	3.0%	~
Binder content	6.7% ±0.02%	6.7%	~
Texture gritted material	declared	1.0mm	~
Texture ungritted material	declared	1.1mm	~

Stage 3: In situ skid resistance measured by the griptester

Skid performance class awarded based on performance

Test required On appropriate Site class

Site Class	HD 28/04 Site	Measuring speed ^d	Minimum mean Grip Number (10m Average)				
	Category ^{a)}	(km/h)	After 4 weeks trafficking	After 6 months trafficking			
1	А, В & С	50	0.39	0.56			
2	R, G1 & S1	50	0.51	0.62			
3	Q, K, G2 & S2	50	0.56	0.67			

Stage 3: In situ skid resistance measured by the griptester

TRANSPOR SCOTLA OMHDHAIL ALBA

Skid perl class aw based or performa

SCRIM performance

	Age at SCRIM Survey		0			1			2			3			4			5			6	
		Average CSC		Average CSC		Average CSC		Average CSC		Average CSC		Average CSC			Average CSC							
TS2010 Material	Site Class 1	Avg SCRIM Diff	Length(m)	Length SCRIM+ve	Avg SCRIM Diff	Length(m)	Length SCRIM +ve	Avg SCRIM Diff	Length(m)	Length SCRIM +ve	Avg SCRIM DIff	Length(m)	Length SCRIM +ve	Avg SCRIM DIff	Length(m)	Length SCRIM +ve	Avg SCRIM DIM	Length(m)	Length SCRIM +ve	Avg SCRIM Diff	Length(m)	Length SCRIM +ve
TS2010 AI01	TS2010 AI01 Site Class 1		0.48			0.47			0.46			0.45			0.46			0.43			0.50	
132010 AI01	Site class 1	0.13	25211	90%	0.12	43312	98%	0.11	33426	95%	0.10	24006	99%	0.11	9414	100%	0.07	1120	100%	0.13	1120	100%
TS2010 AI01	Site Class 2		0.67			0.51			0.39			0.41										
		0.22	100	100%	0.06	60	100%	-0.06	550	0%	-0.04	550	27%									
TS2010 AI01	Site Class 3					0.50			0.50			0.46										
					0.01	1023	44%	0.02	640	70%	-0.04	70	0%									
TS2010 AI03	Site Class 1		0.50			0.53			0.47			0.49			0.51			0.46				
		0.13	1903	95%	0.16	6615	100%	0.10	6038	98%	0.13	3955	100%	0.15	3145	100%	0.11	400	100%			
TS2010 AI03	TS2010 Al03 Site Class 2		0.53			0.53			0.40			0.47			0.48							
		0.07	1060	86%	0.08	432	100%	-0.05	502	16%	0.02	492	55%	0.03	422	95%						
TS2010 AI03	TS2010 AI03 Site Class 3		0.53			0.51			0.45			0.50			0.51							
		0.03	840	66%	0.02	1991	56%	-0.04	1343	27%	0.00	798	19%	0.01	383	100%						
TS2010 AI04	S2010 AI04 Site Class 1		0.44	1000		0.50	2011		0.50	1000						-			-			
		0.08	1030 0.44	100%	0.13	2260	98%	0.15	1030 0.48	100%								<u> </u>			L	
TS2010 AI04	Site Class 3	-0.01	50	0%	0.07	50	100%	0.03	50	100%						-			-			_
		-0.01	50	075	0.07	0.54	100%	0.05	0.44	100%		0.49			0.50			<u> </u>			<u> </u>	<u> </u>
TS2010 AI05	Site Class 1				0.19	200	100%	0.09	200	100%	0.14	200	100%	0.15	200	100%			-			
			0.42		0.15	0.47	10070	0.05	0.52	10070	0.14	0.56	10070	0.15	200	10070					·	
TS2010 AI06	Site Class 1	0.07	740	100%	0.11	890	100%	0.17	740	100%	0.21	210	100%									T
		0.07	0.52	20070	0.11	0.55	20070	0.27	0.55	10070		0.56	20070									-
TS2010 Al06	Site Class 2	0.07	310	100%	0.10	480	100%	0.10	310	100%	0.11	310	100%									
		0.46			0.51			0.51			0.53										-	
TS2010 AI07	TS2010 AI07 Site Class 1	0.07	1145	98%	0.12	1685	99%	0.12	1685	99%	0.13	540	100%									
	elte elses a		0.53			0.49			0.54			0.54										
T52010 AI07	Site Class 2	0.08	90	100%	0.04	270	67%	0.09	270	96%	0.09	180	100%									
75 2010 4107	Site Class 3		0.46			0.48			0.54			0.54										
TS2010 AI07 Site Class 3	-0.04	295	44%	0.02	990	59%	0.08	1025	93%	0.08	730	100%									T	

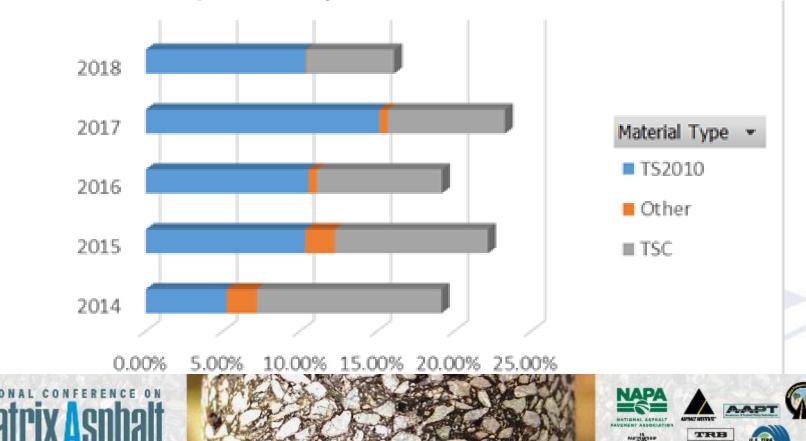
Stone Matrix Asphalt

Design	Agg. Size	stage 3						
Ref No.	-	Trial TD						
AI 01	0/10	1.1						
AI 03	0/10	1.1						
AI 05	0/6	0.8						
AI 06	0/10	1.0						
AI 07	0/10	1.1						
Br 01	0/10	1.2						
Br 02	0/10	1.3						
Br 04	0/10	1.1						
Br 05	0/14	1.5						
Br 06	0/10	1.0						
Br 07	0/10	1.0						
Br 09	0/10	1.0						
Br 10	0/10	1.1						
Br 11	0/10	1.0						
Br 12	0/10	0.9						
Br 13	0/06	1.0						
Hi 01	0/10	1.1						
Le 02	0/10	1.2						
Le 03	0/06	1.1						
Tar 01	0/10	1.0						
Tar 03	0/10	1.2						

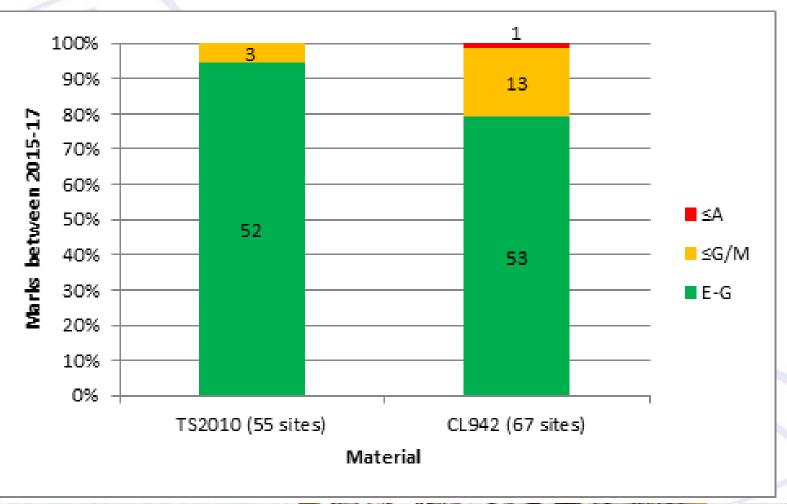
Texture ?

• No texture requirement ... but ...

Agg Size	10mm	6mm			
Ave texture measured	1.1	1.0			
Texture range measured	0.9 - 1.3	0.8 – 1.1			
942 required average	1.1 - 1.6	1.0 – 1.5			
942 required min	0.9	0.9			

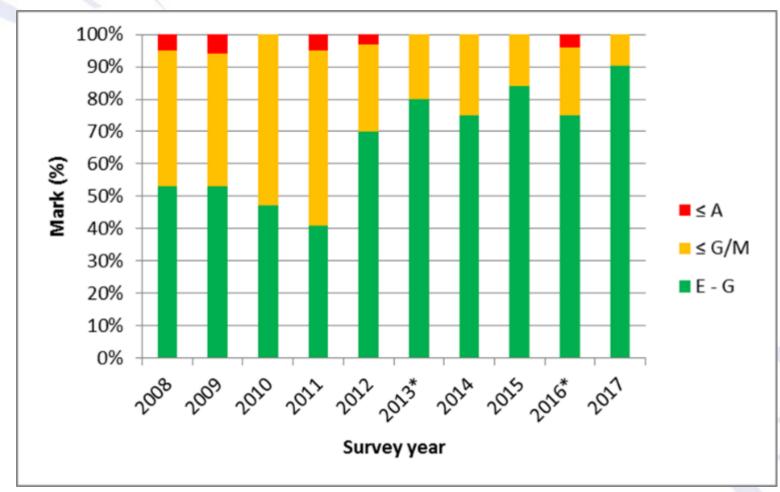


TS2010 - Latest Stats



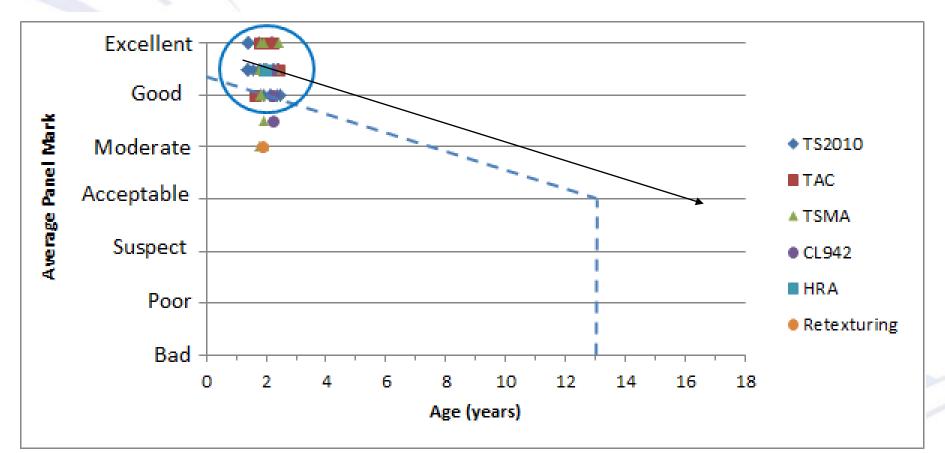
- 1200 lane km approx. 12% network
- >50% over past 5 years

Latest Information – 2 years



Latest Findings

Scottish Surface Inspection Panel ~40 2 year old sites randomly selected across the network each year



A- just acceptable, G/M – No serious issue G/E – performing well

Rate of Deterioration

Whole Life Cost Analysis

- Typical costs around 15% higher ...
- Last twice as long
- Lifecycle savings calculated around 14%
- Equates to £2m per year saving
- We can't afford not to do it !

Recent UK Developments

- Amended Clause 942
- New Clause 941
- Minimum texture requirements lowered
- Maximum texture requirements added
- PSV requirements relaxed
- Aggregate size restrictions added
- Minimum binder contents added
- Void content requirement added

Minimum thickness requirement

Mixture description	Thickness range mm (inches)	Minimum thickness at any one point mm (inches)			
SMA 6 (0.24)	20-40 (0.79-1.57)	15 (0.59)			
SMA 8 (0.31)	20-40 (0.79-1.57)	16 (0.63)			
SMA 10 (0.39)	25 – 40 (0.98 – 1.57)	20 (0.79)			
SMA 14 (0.55)	35 – 50 (1.38 – 1.97)	30 (1.18)			

Why thin?

- Cost saving
- Whole Life cost
- More sustainable use of aggregate
- Consider Stiffness
- When Thin?
 - New binder course
 - Good line + level
 - Favourable weather

When not thin?

- Thicker HRA layer
- Poorer bond beneath
- Colder conditions

Consider Stiffness

Mixture	Indirect Tensile Stiffness (MPa)
SMA 10 Cairneyhill	1036
SMA 6 Jericho Bridge	660
SMA 6 Cairneyhill	560
SMA 10 Ballystockart	1993
SMA 10 Ballystockart	1678

M90 Concrete Carriageway

- Jointed Unreinforced concrete pavement
- 40+ years old
- Micro-surfacing failure
- 6mm SMA + SBS polymer at 25mm

Summary

- Legacy TSC persists
- Success from failure
- New SMA is working
- Better control + durability
- Whole Life Cost value
- "If you're going to do SMA, do it right"
- We can't afford not to

Thank you

- More Information
- <u>https://www.transport.gov.scot/transport-</u> network/roads/design-of-trunk-roads/#45115
- <u>https://trl.co.uk/reports/TRL670</u>
- Please get in touch
- <u>martin.mclaughlin@transport.gov.scot</u>

Thank you for your attention

